#### Life on the Blue Planet:

### Biodiversity research and the new European Marine Policies



Co-chairs: Prof Steve Hawkins, Dr Pippa Moore, Dr Nova Mieszkowska



Moderator: Juliette Young CEH



#### **Session 1**

- Interactions between global change and marine biodiversity – what we know and need to know to protect marine biodiversity to ensure the sustainable use of the marine environment

- the evidence base for the impacts of climate change on marine biodiversity

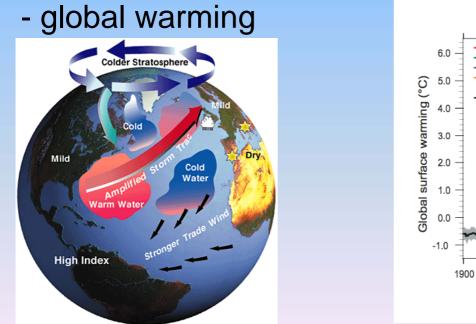
- linking science to management and policy
- Ocean acidification

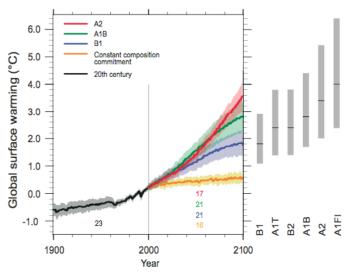
- Taxonomic capability

- Long-term data sets
- Fisheries
- Rocky shores and estuaries
- Benthic communities
- Pelagic communities
- Science to policy

#### **Session 2**

- Effects of the different measures of mitigation and adaptation to climate change on marine biodiversity


- The role of marine biodiversity and coastal ecosystems in the mitigation of climate change effects

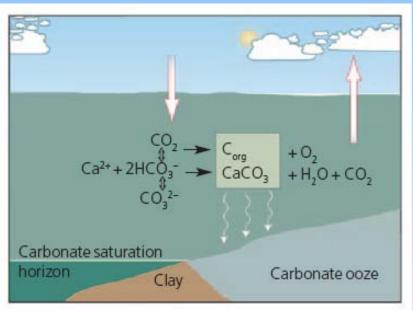

- Coastal defences
- Off-shore renewable developments Off-shore wind farms
- Alternative energy sources fuel from algae

#### **Climate system**

• More research on the interdependence between climate phenomena and biodiversity (Jürgen Alheit) e.g.

- North Atlantic Oscillation;
- the Atlantic Multidecadal Oscillation and;






North Atlantic Oscillation Index

Multi-model global averages of surface warming, IPCC 2007

#### **Ocean Acidification**

• If global emissions of CO<sub>2</sub> continue the average pH of the oceans could fall by 0.5 units by the year 2100 (Royal Society, 2005).



• Need to better understand the mechanisms by which ocean acidification affect organisms

• Knowledge on pH and thermal tolerances of organisms is outdated and little work has been done on the interactive effects of temperature and pH

• Need to quantify effects in relation to future scenarios of anthropogenic CO<sub>2</sub> and ocean warming

(Hans-Otto Pörtner & Steve Widdicombe)

# Monitoring and long-term research (sustained observations)

- More baseline assessments and long-term studies to understand the impact of current changes
- Need for environmental data retrieval from historical sources e.g. notebooks, published literature and reports especially those collected at a pan European level (Monika Kedra)

on &

• Make this data available and compatible to enable future scientific analyses (Doris Schiedek)

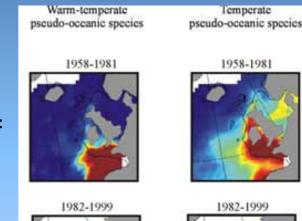
Large-scale and long-term networking of observations of global change and its impact on Marine Biodiversity

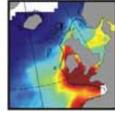
morphological diversity

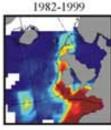
#### **Sustained observations**

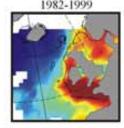
• Require monitoring to be undertaken at appropriate spatial and temporal scales to:

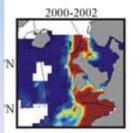
- allow biodiversity dynamics to be linked with global scale atmospheric and oceanographic processes (Antonio Terlizzi).

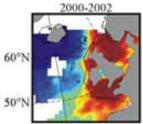

- separate small scale and natural population fluctuations from those associated with climate change.


- separate the simultaneous influence of global scale processes and regional to local scale processes e.g. pollution, invasive species, fishing.


- to allow the development of new models to map the results of small-scale studies to larger— important for creation of networked MPAs (Lisandro Benedetti-Cecchi)


#### **Plankton & pelagic communities**


- Impact of climate change at multi-trophic levels e.g. planktonic, benthic and nektonic communities.
- More research into the interactive effects of climate change on biodiversity e.g. trophic miss-matches, competition, facilitation, recruitment pathways and indirect effects
- Use of indicator species were suggested including:
  - intertidal species for changes off-shore (Alan Southward)
  - top predators as indicators of pelagic diversity, heterogeneity and oceanographic processes (Maurizo Wurtz).














#### **Off-shore benthic communities**

- Too little known to predict or detect the effects of climate change (Paul Sommerfield).
  - little data
  - difficult to harmonise data held
  - time-series data is very rare
  - data on physiology and life histories out of date
  - work on acclimation non-existent
  - more work needed on ecosystem functioning
- Interactive effects of climate on "low-dissolved-oxygen" events (hypoxia and anoxia)— more needs to be known on impacts and mitigation (Michael Stachowitsch).

### Modelling

 Need to develop reliable global climate models stemming from various social and economic scenarios for the 21<sup>st</sup> Century (Ricardo Lemos et al).

- Creation of fit-for-purpose models to manage marine environment (Katja Philippart)
- Need to develop systems that are better able to track, forecast and control uncertainties regarding biodiversity loss
- Tools to validate predictions (Ricardo Lemos et al).
- Information should feed into the building of mechanism based models of organism and ecosystem functioning in response to climate change

#### **Taxonomic capability**

- Lack of funding for taxonomy
  - resulting in taxonomists not being replaced when they retire
  - little is being done on revision of taxa
  - little exploration of understudied regions
  - no compilation of flora and fauna
- A new wave of taxonomists is needed
  - traditional approach
  - molecular tools to allow population and community level genetic analyses



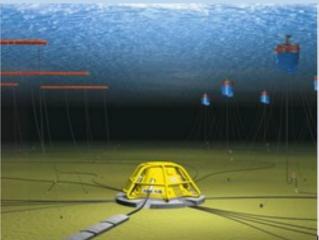
#### **Coastal defence structures**

(Laura Airoldi)

• Increase in the number of coastal defence structures leading to:

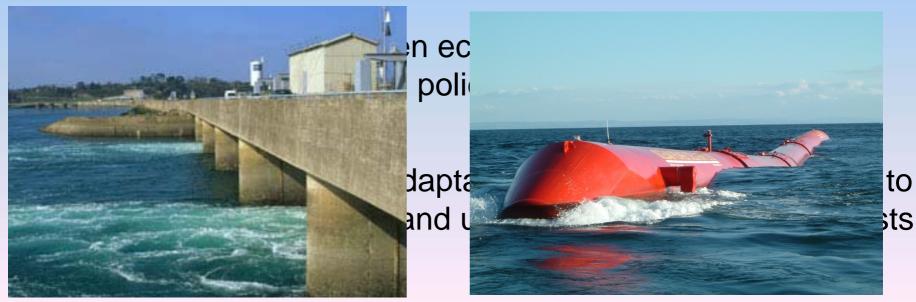
- loss of natural habitat
- artificial hard substratum species proliferating resulting in changes in species composition, abundance and diversity
- downstream effects through expansion of introduced species
- stepping stones for range expansion in response to climate change
- monitoring before and after construction required to assess their effectiveness of meeting management goals

#### **Off-shore wind farms**


• Direct and indirect impacts of off-shore wind farms were discussed

• call for negative impacts of wind farms to be off-set by positive ones e.g. creation of effective no-take zones (Doris Diembeck)

• more research into the effects of cabling between turbines and shore on fish and cetacean behaviour (Andy Gill)


• the need to think of the impacts of other OREDs (Magdalena Muir)\_\_\_\_\_





## Off-shore renewable energy developments

- How will OREDs be integrated with other marine users?
- What are the most likely effects of off-shore installations on marine biota?
- How can science and decision makers best interact to support optimal environmental management decisions? (Benjamin Burkhard)



#### Alternative energy sources

#### **Fuel from marine sources**

(Carol Llewellyn & Stephen SKill)

- microalgae can produce up to 30x more oil per unit of growth than land plants
- producing a clean alternative energy source
- area shows great potential but,

-more molecular and biochemical research required

 more research into optimising algal production and harvesting



Plymouth Marine Laboratory's bioreactor in the House of Commons 2007

#### Science to policy

- more mechanisms by which science can inform policy and practice more rapidly – good example MarClim project (Larissa Naylor)
- need to create evidence based policies long-term monitoring (Katja Philippart)
- link natural heritage with cultural heritage (Jan Jensen)
- create a network such as Natura 2000 for onshore areas (Jan Jansen)
- encourage cross-disciplinary research to create a solid theoretical framework

#### **Science Funding**

 fierce competition for funding generally results in essential, but unglamorous science being un(der)-funded e.g. taxonomy (Ferdinando Boero)

 funding still very much geared to producing knowledge rather than communication of that knowledge to a broader audience

• more interdisciplinary research with funding that extends beyond the average 3-5 years.

#### **Science communication**

• Increasing the level of communication between scientists, managers, policymakers and stakeholders was a key theme to come out.

- more training opportunities for scientists wanting to learn to communicate their science to a broader audience

- need intermediaries between scientists, stakeholders and policymakers who can interpret the data and provide an 'economical' value on and identify the risk factors e.g. invasive species (Frederico Cardigos).

#### Conclusions

• long-term monitoring is vital and needs to be undertaken at appropriate temporal and spatial scales.

• more multi-disciplinary studies incorporating taxonomy, ecology, evolutionary ecology, molecular techniques, biogeography, systems ecology and modelling is required.

• interactions between natural variability and anthropogenically driven change on biodiversity need to be understood

 research is needed into the design and construction of networked MPAs

• loss of taxonomic skills and incomplete species lists are a major limitation.

• a need for better data access, data archives and data sharing.

• Better communication between scientists and managers, policymakers and stakeholders