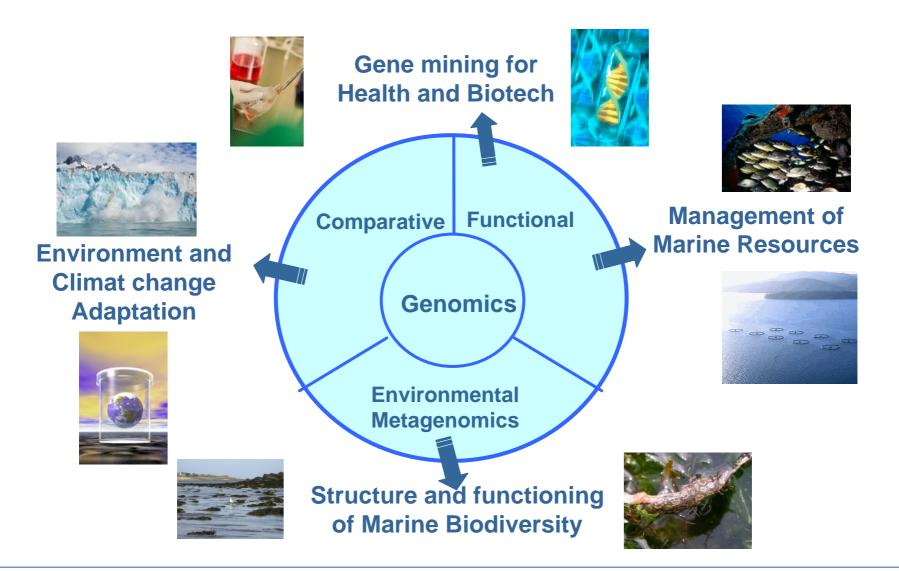


Sustainable Development, Global Change and Ecosystems

EU Network of Excellence

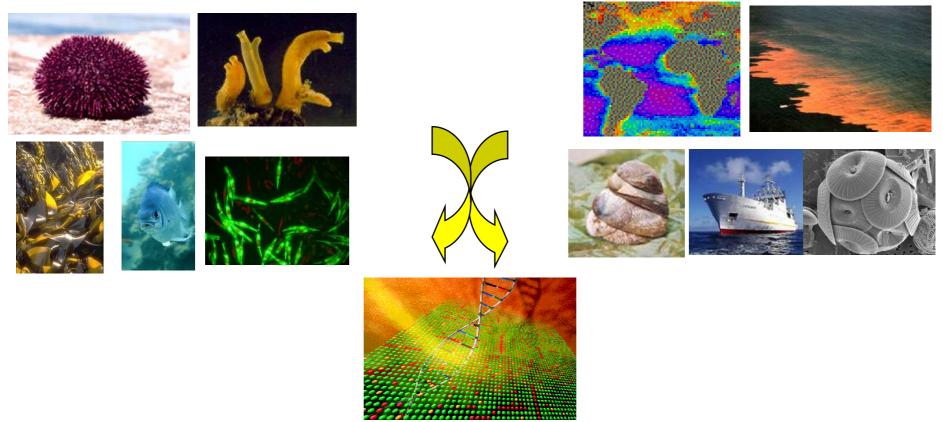
Marine Genomics Europe brings genomics into marine biology

- Scientific goals and research activities
- Strengthen and integrate the community of Marine biologists for structuring the European Research Area (ERA)


http://www.marine-genomics-europe.org

Genomics is a key discipline of Marine Systems Biology

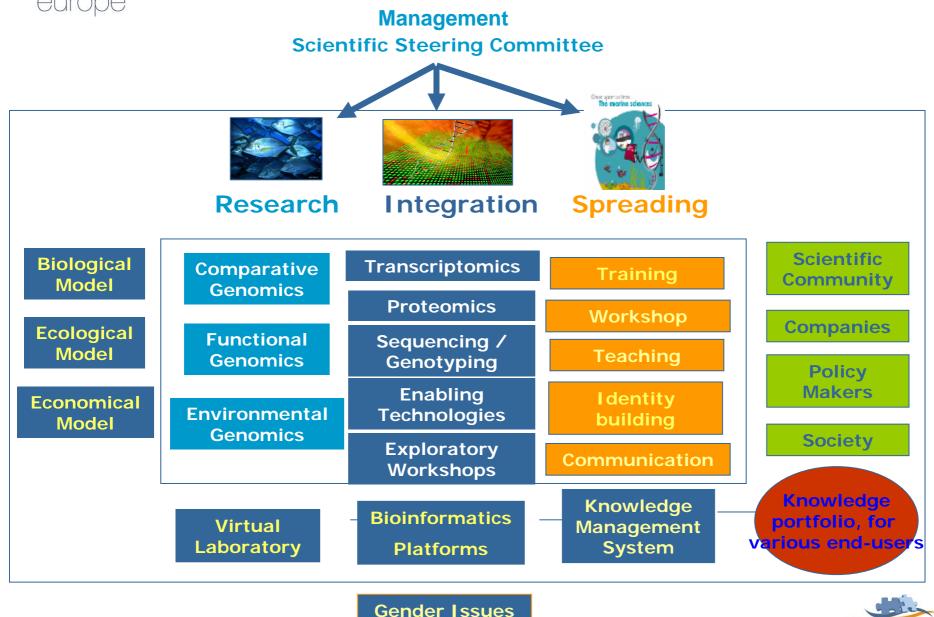
Understanding the function of marine systems through interactions of differents levels of organization



The Science of Genomics applied to the Marine Life

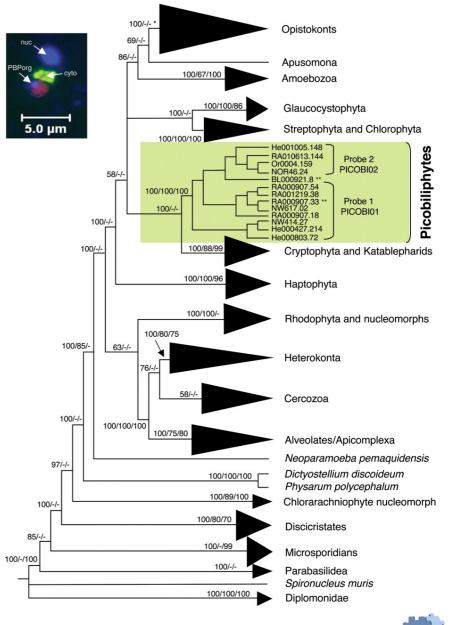
Marine genomics allows to draw **global conclusions** about our surrounding environment and takes a **holistic approach** to ocean managementaries

Marine Genomics Europe brings together scientists investigating a wide range of questions related to the biology of marine organisms as well as to the functioning of marine ecosystems



- To **assemble a critical mass** essential to achieve large scale genomic (and postgenomic) projects
- To expand our expertise
- To use genomic tools for studying model organisms and for exploring marine ecosystems

JOINT PROGRAMME of ACTIVITY


ENVIRONMENTAL GENOMICS: discovery of new lineages

One example...

Environmental sequencing has recently led to the discovery of a new major eukaryotic photosynthetic group from in various samples collected in the North Atlantic : the Picobiliphytes a new algal phylum

Picobiliphytes are unicellular, slightly oblong, and approximately 2 µm

Not et al . Science 12 January 2007: Vol. 315, no. 5, 809, pp. 253 - 255

WHAT IS THE ADDED VALUE OF MARINE GENOMICS?

The Ocean provides opportunities for Human health and for Innovative Technologies:

Pathogens: seaborne infections (cholerae), harmful algal blooms
Marine models for human health: for functioning of human body and enhance medical research

- •Forensics and DNA-based traceability
- •Bio-prospecting: exploring the potential of Marine biodiversity

•Marine biotechnology: discovery of new enzymes and bioactive compounds from stressed and extreme environments

The Oceans provide a social and cultural space:

•MG contributes to the understanding, exploitation and management of the oceans.

- To the monitoring of anthropogenic impact on the blue planet
- To the detection and monitoring of alien invasive species
- To the monitoring of overfishing (quotas and by catch)
- To the monitoring of the effect of global change on ecosystem functioning

The Oceans as a natural heritage

- The Oceans are the cradle of life and the long evolution has generated a wealth of biodiversity. MG helps in building the Tree of life which describes the relationships of all living organisms in an evolutionary context

- Genomics is a key tool in assessing the diversity, importance and functioning of the marine microbial organisms which are the drivers of the global biological pump (carbon and oxygen cycle)

- Marine Metagenomics has enabled us to start reconstructing the function of microbial communities in CO_2 sequestration, ocean dynamics and acidity. Discoveries: novel biochemical pathways, new biotech applications.

The Oceans as a unique laboratory for basic research

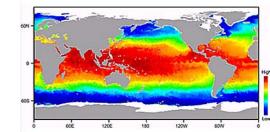
The Oceans provide unique opportunities to carry out research investigations of numerous ecosystems, organisms and populations.

 \rightarrow better understanding of the fundamentals of life

Cell biology, evolutionary & developmental biology, marine ecosystems and population structures, community ecology

Marine Genomics and Biodiversity

- High throughput tools for rapid screening (sequencing and genotyping, microarrays as biosensors of biodiversity, etc)
- Discovering and exploring new biodiversity
- Metagenomics approaches and cyber-infrastructures
- Genomics approach for discovering the dark matter of the oceans
- Building the tree of life
- Population genomics for better predicting endangered biodiversity and help in designing protective measures
- Understanding the processes of species invasions


An Agenda for Genomic Knowledge about the Oceans in 2010

- **1- Establishment of marine model systems**
- 2- Exploitation of large metagenomics datasets
- 3- Increase genome sequencing for marine organisms and ecosystems
- 4- Develop integrated science and multidisciplinary approaches
- **5- Develop remote sensing stations**
- 6- Promote education and training
- 7- Support the development of bio-prospecting infrastructures
- 8- Improve data and information management
- 9- Reach and maintain a critical mass of researchers
- **10- Foster and support Science mediation**

Long term integration – beyond MGE FP6 contract

1- Scientific Coordination and Education Program

 Coordination of activities (workshops, web site)
 → Cement and foster the MGE community
 Perpetuate the teaching and Education programme
 → International PhD programme

2 – Support to Common Infrastructures and Common Databases - Development and coordination of access to Infrastructures European Marine Biological Resources centres (ASSEMBLE II) High throughput technological Platforms Databases maintenance

3- Support Joint Research Programmes via transnational joint Calls

Acknowledgments

The European Commission Contract N° GOCE-CT-2004-505403 FP6

All my colleagues from Marine Genomics Europe

Thank you for your attention

@MGF

The challenge: Understanding the complexity of the marine environment

- Integration of multiple levels of data
- From reductionism to holism
- **Evolutionary process**
- Merging multidisciplinary approaches

The Omics approaches Genomics Transcriptomics Proteomics Metabolomics .../...

Statistics & Computational sciences Bioinformatics Prognostic Modeling New testable hypothesis

Find a common language!

New disciplines: chemical ecology, community genomics, population genomics

The Marine Ecotron

Ecotrons/mesocosms

Remote observation systems

Understanding of Interactions Combining different scales

Chemist

Ecologist

Biologist

Physicist

Oceanographer

Geographer

Meteorologist

Geologist

WHAT ARE THE MAIN CHALLENGES/NEEDS FOR THE FUTURE?

The real impact of marine genomic research on society will be impressive

- Better understanding of marine ecosystems functions
- Management of marine activities and sustainable exploitation of natural resources

- Measuring, monitoring, understanding and predicting the mechanisms of ocean-atmosphere feedbacks in climate change and their impact on the larger ocean environment

This requires the address of a number of key issues grouped in ten actions recommendations

Position paper

"The European Flagship in Marine Sciences for a Sustainable Future"